edexcel

Mark Scheme (Results)
Summer 2015

Pearson Edexcel GCE in
Core Mathematics 4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere
Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA041202
All the material in this publication is copyright
© Pearson Education Ltd 2015

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$
2. Formula

Attempt to use the correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($\left.x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

June 2015
 6666/01 Core Mathematics 4
 Mark Scheme

Question Number		Scheme	Marks
1. (a)	$(4+5 x)^{\frac{1}{2}}=(4)^{\frac{1}{2}}\left(1+\frac{5 x}{4}\right)^{\frac{1}{2}}=2\left(1+\frac{5 x}{4}\right)^{\frac{1}{2}}$ (4) ${ }^{\frac{1}{2}}$ or $\underline{2}$		B1
			M1 A1ft
	$\begin{aligned} & =\{2\} \\ & =2 \end{aligned}$	$\begin{aligned} & \left.1+\left(\frac{1}{2}\right)\left(\frac{5 x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{5 x}{4}\right)^{2}+\ldots\right] \\ & \left.1+\frac{5}{8} x-\frac{25}{128} x^{2}+\ldots\right] \end{aligned}$ See notes below!	
		$\frac{5}{4} x ;-\frac{25}{64} x^{2}+\ldots$.	A1; A1
(b)	$\left\{x=\frac{1}{10} \Rightarrow(4+5(0.1))^{\frac{1}{2}}=\sqrt{4.5}=\sqrt{\frac{9}{2}}=\frac{3}{\sqrt{2}}=\frac{3}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}\right\}$		[5]
		$=\frac{3}{2} \sqrt{2} \quad \frac{3}{2} \sqrt{2}$ or $k=\frac{3}{2}$ or 1.5 o.e.	B1
			[1]
(c)	$\frac{3}{2} \sqrt{2} \text { or } 1.5 \sqrt{2} \text { or } \frac{3}{\sqrt{2}}=2+\frac{5}{4}\left(\frac{1}{10}\right)-\frac{25}{64}\left(\frac{1}{10}\right)^{2}+\ldots\{=2.121 \ldots\} \quad \text { See notes }$		M1
	So, $\frac{3}{2} \sqrt{2}=\frac{543}{256}$ or $\frac{3}{\sqrt{2}}=\frac{543}{256}$		
	yields, $\sqrt{2}=\frac{181}{128}$ or $\sqrt{2}=\frac{256}{181} \ldots \ldots \ldots \ldots \ldots$		A1 oe
			[2] 8
	Question 1 Notes		
1. (a)	B1	(4) $)^{\frac{1}{2}}$ or $\underline{2}$ outside brackets or $\underline{2}$ as candidate's constant term in their binomial expansion.	
	M1	Expands $(\ldots+k x)^{\frac{1}{2}}$ to give any 2 terms out of 3 terms simplified or un-simplified, Eg: $1+\left(\frac{1}{2}\right)(k x)$ or $\quad\left(\frac{1}{2}\right)(k x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(k x)^{2} \quad$ or $\quad 1+\ldots+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(k x)^{2}$ where k is a numerical value and where $k \neq 1$.	
	A1 Note	A correct simplified or un-simplified $1+\left(\frac{1}{2}\right)(k x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(k x)^{2}$ expansion with consistent $(k x)$. ($k x$), $k \neq 1$, must be consistent (on the RHS, not necessarily on the LHS) in a candidate's expansion.	

1. (a)

Alternative methods for part (a)
Alternative method 1: Candidates can apply an alternative form of the binomial expansion.

$\left\{(4+5 x)^{\frac{1}{2}}\right\}=(4)^{\frac{1}{2}}+\left(\frac{1}{2}\right)(4)^{-\frac{1}{2}}(5 x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(4)^{-\frac{3}{2}}(5 x)^{2}$	
B1	$(4)^{\frac{1}{2}}$ or 2
M1	Any two of three (un-simplified) terms correct.
A1	All three (un-simplified) terms correct.
A1	$2+\frac{5}{4} x$ (simplified fractions) or allow $2+1.25 x$ or $2+1 \frac{1}{4} x$
A1	Accept only $-\frac{25}{64} x^{2}$ or $-0.390625 x^{2}$

Alternative Method 2: Maclaurin Expansion $\mathrm{f}(x)=(4+5 x)^{\frac{1}{2}}$

$\mathrm{f}^{\prime \prime}(x)=-\frac{25}{4}(4+5 x)^{-\frac{3}{2}}$	Correct $\mathrm{f}^{\prime \prime}(x)$	B1
$\mathrm{f}^{\prime}(x)=1$	$\pm a(4+5 x)^{-\frac{1}{2}} ; \quad a \neq \pm 1$	M1
$\mathrm{f}^{\prime}(x)=\frac{1}{2}(4+5 x)^{2}(5)$	$\frac{1}{2}(4+5 x)^{-\frac{1}{2}}(5)$	A1 oe
$\left\{\therefore \mathrm{f}(0)=2, \mathrm{f}^{\prime}(0)=\frac{5}{4}\right.$ and $\left.\mathrm{f}^{\prime \prime}(0)=-\frac{25}{32}\right\}$		
So, $\mathrm{f}(x)=2+\frac{5}{4} x ;-\frac{25}{64} x^{2}+\ldots$		A1; A1

2. (a)	M1	Differentiates implicitly to include either $\pm 3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $-4 y^{2} \rightarrow \pm k y \frac{\mathrm{~d} y}{\mathrm{~d} x}$. (Ignore $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)$).
	A1 Note	Both $x^{2} \rightarrow \underline{2 x}$ and $\ldots-4 y^{2}+64=0 \rightarrow-8 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ If an extra term appears then award A0.
	M1 Note	$\begin{aligned} & -3 x y \rightarrow-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y \text { or }-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y \text { or } 3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y \text { or } 3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y \\ & 2 x-3 y-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-8 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \rightarrow 2 x-3 y=3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \end{aligned}$ will get $1^{\text {st }} \mathrm{A} 1$ (implied) as the " $=0$ " can be implied by the rearrangement of their equation.
	dM1	dependent on the FIRST method mark being awarded. An attempt to factorise out all the terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as long as there are at least two terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ i.e. $\ldots+(-3 x-8 y) \frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ or $\quad \ldots=(3 x+8 y) \frac{\mathrm{d} y}{\mathrm{~d} x}$. (Allow combining in 1 variable).
	A1 Note Note	$\frac{2 x-3 y}{3 x+8 y}$ or $\frac{3 y-2 x}{-3 x-8 y}$ or equivalent. cso If the candidate's solution is not completely correct, then do not give this mark. You cannot recover work for part (a) in part (b).
2. (b)	M1	Sets their numerator of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ equal to zero (or the denominator of their $\frac{\mathrm{d} x}{\mathrm{~d} y}$ equal to zero) o.e.
	Note	$1^{\text {st }} \mathrm{M} 1$ can also be gained by setting $\frac{\mathrm{d} y}{\mathrm{~d} x}$ equal to zero in their " $2 x-3 y-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-8 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ "
	Note Note Note	If their numerator involves one variable only then only the $1^{\text {st }} \mathbf{~ M 1 ~ m a r k ~ i s ~ p o s s i b l e ~ i n ~ p a r t ~ (b) . ~}$ If their numerator is a constant then no marks are available in part (b) If their numerator is in the form $\pm a x^{2} \pm b y=0$ or $\pm a x \pm b y^{2}=0$ then the first $\mathbf{3}$ marks are possible in part (b).
	Note	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x-3 y}{3 x+8 y}=0$ is not sufficient for M1.
	A1ft	Either - Sets $2 x-3 y$ to zero and obtains either $y=\frac{2}{3} x$ or $x=\frac{3}{2} y$ - the follow through result of making either y or x the subject from setting their numerator of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ equal to zero
	dM1	dependent on the first method mark being awarded. Substitutes either their $y=\frac{2}{3} x$ or their $x=\frac{3}{2} y$ into the original equation to give an equation in one variable only.
	A1	Obtains either $x=\frac{24}{5}$ or $-\frac{24}{5}$ or $y=\frac{16}{5}$ or $-\frac{16}{5}$, (or equivalent) by correct solution only. i.e. You can allow for example $x=\frac{48}{10}$ or 4.8 , etc.
	Note	$x=\sqrt{\frac{576}{25}}$ (not simplified) or $y=\sqrt{\frac{256}{25}}$ (not simplified) is not sufficient for A1.

$\begin{gathered} \text { 2. (b) } \\ \text { ctd } \end{gathered}$	ddM1	dependent on both previous method marks being awarded in this part. Method 1 Either: - substitutes their x into their $y=\frac{2}{3} x$ or substitutes their y into their $x=\frac{3}{2} y$, or - substitutes the other of their $y=\frac{2}{3} x$ or their $x=\frac{3}{2} y$ into the original equation, and achieves either: - exactly two sets of two coordinates or - exactly two distinct values for x and exactly two distinct values for y. Method 2 Either: - substitutes their first x-value, x_{1} into $x^{2}-3 x y-4 y^{2}+64=0$ to obtain one y-value, y_{1} and substitutes their second x-value, x_{2} into $x^{2}-3 x y-4 y^{2}+64=0$ to obtain $1 y$-value y_{2} or - substitutes their first y-value, y_{1} into $x^{2}-3 x y-4 y^{2}+64=0$ to obtain one x-value x_{1} and substitutes their second y-value, y_{2} into $x^{2}-3 x y-4 y^{2}+64=0$ to obtain one x-value x_{2}. Three or more sets of coordinates given (without identification of two sets of coordinates) is ddM0.
	A1	Both $\left(\frac{24}{5}, \frac{16}{5}\right)$ and $\left(-\frac{24}{5},-\frac{16}{5}\right)$, only by cso. Note that decimal equivalents are fine.
	Note	Also allow $x=\frac{24}{5}, y=\frac{16}{5}$ and $x=-\frac{24}{5}, y=-\frac{16}{5}$ all seen in their working to part (b).
	Note	Allow $x= \pm \frac{24}{5}, y= \pm \frac{16}{5}$ for $3^{\text {rd }} \mathrm{A} 1$.
	Note	$x= \pm \frac{24}{5}, y= \pm \frac{16}{5}$ followed by eg. $\left(\frac{16}{5}, \frac{24}{5}\right)$ and $\left(-\frac{16}{5},-\frac{24}{5}\right)$ (eg. coordinates stated the wrong way round) is $3^{\text {rd }} \mathrm{A} 0$.
	Note	It is possible for a candidate who does not achieve full marks in part (a), (but has a correct numerator for $\frac{\mathrm{d} y}{\mathrm{~d} x}$) to gain all 6 marks in part (b).
	Note	Decimal equivalents to fractions are fine in part (b). i.e. $(4.8,3.2)$ and $(-4.8,-3.2)$.
	Note	$\left(\frac{24}{5}, \frac{16}{5}\right)$ and $\left(-\frac{24}{5},-\frac{16}{5}\right)$ from no working is M0A0M0A0M0A0.
	Note	Candidates could potentially lose the final 2 marks for setting both their numerator and denominator to zero.
	Note	No credit in this part can be gained by only setting the denominator to zero.

3. (c)	B1	$4 x \rightarrow 2 x^{2} \text { or } \frac{4 x^{2}}{2} \text { oe }$
	M1 Note Note	Complete method of applying limits of their x_{A} and 0 to all terms of an expression of the form $\pm A x^{2} \pm B x \mathrm{e}^{\frac{1}{2} x} \pm C \mathrm{e}^{\frac{1}{2} x}($ where $A \neq 0, B \neq 0$ and $C \neq 0)$ and subtracting the correct way round. Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0. $\ln 16$ or $2 \ln 4$ or equivalent is fine as an upper limit.
	A1	A correct three term exact quadratic expression in $\ln 2$. For example allow for A1 - $32(\ln 2)^{2}-32(\ln 2)+12$ - $8(2 \ln 2)^{2}-8(4 \ln 2)+12$ - $2(4 \ln 2)^{2}-32(\ln 2)+12$ - $2(4 \ln 2)^{2}-2(4 \ln 2) \mathrm{e}^{\frac{1}{2}(4 \ln 2)}+12$
	Note Note Note	Note that the constant term of 12 needs to be combined from $4 \mathrm{e}^{\frac{1}{2}(4 \ln 2)}-4 \mathrm{e}^{\frac{1}{2}(0)}$ o.e. Also allow $32 \ln 2(\ln 2-1)+12$ or $32 \ln 2\left(\ln 2-1+\frac{12}{32 \ln 2}\right)$ for A1. Do not apply "ignore subsequent working" for incorrect simplification. Eg: $32(\ln 2)^{2}-32(\ln 2)+12 \rightarrow 64(\ln 2)-32(\ln 2)+12$ or $32(\ln 4)-32(\ln 2)+12$
	Note	Bracketing error: $32 \ln 2^{2}-32(\ln 2)+12$, unless recovered is final A0.
	Note	Notation: Allow $32\left(\ln ^{2} 2\right)-32(\ln 2)+12$ for the final A1.
	Note	$5.19378 \ldots$ without seeing $32(\ln 2)^{2}-32(\ln 2)+12$ is A0.
	Note	5.19378... following from a correct $2 x^{2}-\left(2 x \mathrm{e}^{\frac{1}{2^{x}}}-4 \mathrm{e}^{\frac{1}{2} x}\right)$ is M1A0.
	Note	5.19378... from no working is M0A0.

Question Number	Scheme	Marks
4.	$l_{1}: \mathbf{r}=\left(\begin{array}{r}5 \\ -3 \\ p\end{array}\right)+\lambda\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right), \quad l_{2}: \mathbf{r}=\left(\begin{array}{r}8 \\ 5 \\ -2\end{array}\right)+\mu\left(\begin{array}{r}3 \\ 4 \\ -5\end{array}\right)$. Let $\theta=$ acute angle between l_{1} and l_{2}. Note: You can mark parts (a) and (b) together.	
(a)	$\left\{l_{1}=l_{2} \Rightarrow \mathbf{i}:\right\} 5=8+3 \mu \Rightarrow \mu=-1$ Finds μ and substitutes their μ into l_{2}	M1
	So, $\{\overrightarrow{O A}\}=\left(\begin{array}{r}8 \\ 5 \\ -2\end{array}\right)-1\left(\begin{array}{r}3 \\ 4 \\ -5\end{array}\right)=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right) \quad 5 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$ or $\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)$ or $(5,1,3)$	A1
		[2]
(b)	$\{\mathbf{j}:-3+\lambda=5+4 \mu \Rightarrow\}-3+\lambda=5+4(-1) \Rightarrow \lambda=4 \quad \begin{aligned} & \text { Equates } \mathbf{j} \text { components, substitutes } \\ & \text { their } \mu \text { and solves to give } \lambda=\ldots\end{aligned}$	M1
	$\begin{aligned} & \mathbf{k}: p-3 \lambda=-2-5 \mu \Rightarrow \\ & p-3(4)=-2-5(-1) \Rightarrow p=15 \end{aligned}$ or $\mathbf{k}: p-3 \lambda=3 \Rightarrow$ Equates \mathbf{k} components, substitutes their λ and their μ and solves to give $p=\ldots$ or equates \mathbf{k} components to give their " $p-3 \lambda=$ the \mathbf{k} value of A found in part (a)", substitutes their λ and solves to give $p=$	M1
	$p-3(4)=3 \rightarrow \underline{p=15}$	A1
		[3]
(c)	$\mathbf{d}_{1}=\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right), \mathbf{d}_{2}=\left(\begin{array}{r}3 \\ 4 \\ -5\end{array}\right) \Rightarrow\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right) \cdot\left(\begin{array}{r}3 \\ 4 \\ -5\end{array}\right) \quad \begin{array}{r}\text { Realisation that the dot product is } \\ \text { required between } \\ \pm A d_{1} \text { and } \pm B \mathbf{d}_{2} .\end{array}$	M1
	$\cos \theta= \pm K\left(\frac{0(3)+(1)(4)+(-3)(-5)}{\sqrt{(0)^{2}+(1)^{2}+(-3)^{2}} \cdot \sqrt{(3)^{2}+(4)^{2}+(-5)^{2}}}\right) \quad \begin{gathered}\text { An attempt to apply the dot } \\ \text { product formula between } \pm A \mathbf{d}_{1} \\ \text { and } \pm B \mathbf{d}_{2} .\end{gathered}$	$\begin{gathered} \text { dM1 } \\ \substack{\text { (A1 on } \\ \text { ePEN })} \end{gathered}$
	$\cos \theta=\frac{19}{\sqrt{10} \cdot \sqrt{50}} \Rightarrow \theta=31.8203116 \ldots=31.82(2 \mathrm{dp})$ anything that rounds to 31.82	A1
		[3]
(d)	$\begin{aligned} & \overrightarrow{O B}=\left(\begin{array}{r} 11 \\ 9 \\ -7 \end{array}\right) ; \overrightarrow{A B}=\left(\begin{array}{r} 11 \\ 9 \\ -7 \end{array}\right)-\left(\begin{array}{l} 5 \\ 1 \\ 3 \end{array}\right)=\left(\begin{array}{r} 6 \\ 8 \\ -10 \end{array}\right) \text { or } \overrightarrow{A B}=2\left(\begin{array}{r} 3 \\ 4 \\ -5 \end{array}\right)=\left(\begin{array}{r} 6 \\ 8 \\ -10 \end{array}\right) \quad \begin{array}{r} \text { See } \\ \text { notes } \end{array} \\ & \|\overrightarrow{A B}\|=\sqrt{6^{2}+8^{2}+(-10)^{2}}\{=10 \sqrt{2}\} \end{aligned}$	M1
	$\frac{d}{10 \sqrt{2}}=\sin \theta$ Writes down a correct trigonometric equation involving the shortest distance, d. Eg: $\frac{d}{\text { their } A B}=\sin \theta$, oe.	dM1
	$\{d=10 \sqrt{2} \sin 31.82 \ldots \Rightarrow d=7.456540753 \ldots=7.46$ (3sf) \quad anything that rounds to 7.46	A1
		[3] 11

4. (b) Alternative method for part (b)

$$
\begin{aligned}
& \left\{\begin{array}{r}
3 \times \mathbf{j}:-9+3 \lambda=15+12 \mu \\
\mathbf{k}: p-3 \lambda=-2+5 \mu
\end{array}\right\} \quad p-9=13+7 \mu \\
& p-9=13+7(-1) \Rightarrow p=15
\end{aligned}
$$

4. (d) Alternative Methods for part (d) Let X be the foot of the perpendicular from B onto l_{1}
$\mathbf{d}_{1}=\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right), \quad \overrightarrow{O X}=\left(\begin{array}{r}5 \\ -3 \\ 15\end{array}\right)+\lambda\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right)=\left(\begin{array}{c}5 \\ -3+\lambda \\ 15-3 \lambda\end{array}\right)$
$\overrightarrow{B X}=\left(\begin{array}{c}5 \\ -3+\lambda \\ 15-3 \lambda\end{array}\right)-\left(\begin{array}{r}11 \\ 9 \\ -7\end{array}\right)=\left(\begin{array}{l}-6 \\ -12+\lambda \\ 22-3 \lambda\end{array}\right)$
Method 1
$\overrightarrow{B X} \bullet \mathbf{d}_{1}=0 \Rightarrow\left(\begin{array}{c}-6 \\ -12+\lambda \\ 22-3 \lambda\end{array}\right) \bullet\left(\begin{array}{r}0 \\ 1 \\ -3\end{array}\right)=-12+\lambda-66+9 \lambda=0$
leading to $10 \lambda-78=0 \Rightarrow \lambda=\frac{39}{5}$
$\left(\begin{array}{l}-6\end{array}\right)\left(\begin{array}{l}-6\end{array}\right) \quad$ Substitutes their value of λ into their $\overrightarrow{B X}$.

Note: This mark is dependent upon the previous M1 mark.
awrt 7.46
solves the resulting equation to find a value for λ.
$d=B X=\sqrt{(-6)^{2}+\left(-\frac{21}{5}\right)^{2}+\left(-\frac{7}{5}\right)^{2}}=7.456540753 \ldots$

| (Allow a sign slip in
 copying \mathbf{d}_{1}) |
| ---: | ---: | ---: |
| Applies $\overrightarrow{B X} \bullet \mathbf{d}_{1}=0$ and |
| solves the resulting |
| equation to find |
| a value for λ | . \quad M1

Method 2

$\begin{aligned} & \text { Let } \beta=\|\overrightarrow{B X}\|^{2}=36+144-24 \lambda+\lambda^{2}+484-132 \lambda+9 \lambda^{2} \\ & \quad=10 \lambda^{2}-156 \lambda+664 \\ & \text { So } \frac{\mathrm{d} \beta}{\mathrm{~d} \lambda}=20 \lambda-156=0 \Rightarrow \lambda=\frac{39}{5} \end{aligned}$		Finds $\beta=\|\overrightarrow{B X}\|^{2}$ in terms of λ, finds $\frac{\mathrm{d} \beta}{\mathrm{d} \lambda}$ and sets this result equal to 0 and finds a value for	M1
$\|\overrightarrow{B X}\|^{2}=10\left(\frac{39}{5}\right)^{2}-156\left(\frac{39}{5}\right)+664=\frac{278}{5}$	Substitu No	their value of λ into their $\|\overrightarrow{B X}\|^{2}$. This mark is dependent upon the previous M1 mark.	dM1
$d=B X=\sqrt{\frac{278}{5}}=7.456540753 \ldots$		awrt 7.46	A1

	Question 4 Notes			
4. (a)	M1 A1 Note	Finds μ and substitutes their μ into l_{2} Point of intersection of $5 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$. Allow $\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)$ or (5,	$1,3) .$	
(b)	M1	Equates \mathbf{j} components, substitutes their μ and solves to give $\lambda=\ldots$		
	M1	Equates \mathbf{k} components, substitutes their λ and their μ and solves to give $p=\ldots$ or equates \mathbf{k} components to give their " $p-3 \lambda=$ the \mathbf{k} value of A " found in part (b)		
	A1	$p=15$		
(c)	$\begin{gathered} \text { NOTE } \\ \text { M1 } \\ \text { Note } \end{gathered}$	Part (c) appears as M1A1A1 on ePEN, but now is marked as M1M1A1. Realisation that the dot product is required between $\pm A \mathbf{d}_{1}$ and $\pm B \mathbf{d}_{2}$.		
	dM1	dependent on the FIRST method mark being awarded. An attempt to apply the dot product formula between $\pm A \mathbf{d}_{1}$ and $\pm B \mathbf{d}_{2}$		
	A1	anything that rounds to 31.82. This can also be achieved by $180-148.1796 . .=$ awrt 31.82		
	Note	M1A1 for $\cos \theta=\left(\frac{0-16-60}{\sqrt{(0)^{2}+(4)^{2}+(-12)^{2}} \cdot \sqrt{(-3)^{2}+(-4)^{2}+(5)^{2}}}\right)=\frac{-76}{\sqrt{160} \cdot \sqrt{50}}$		
	Alternat Only ap $\mathrm{d}_{1} \times \mathrm{d}_{2}$ $\sin \theta=$	e Method: Vector Cross Product ly this scheme if it is clear that a candidate is applying $\begin{aligned} & \left(\begin{array}{r} 0 \\ 1 \\ -3 \end{array}\right) \times\left(\begin{array}{r} 3 \\ 4 \\ -5 \end{array}\right)=\left\{\left.\begin{array}{\|ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & -3 \\ 3 & 4 & -5 \end{array} \right\rvert\,=7 \mathbf{i}-9 \mathbf{j}-3 \mathbf{k}\right\} \\ & \sin \theta=\frac{\sqrt{(7)^{2}+(-9)^{2}+(3)^{2}}}{\sqrt{(0)^{2}+(1)^{2}+(-3)^{2}} \cdot \sqrt{(3)^{2}+(4)^{2}+(-5)^{2}}} \\ & \frac{\sqrt{139}}{\sqrt{10} \cdot \sqrt{50}} \Rightarrow \theta=31.8203116 \ldots=31.82(2 \mathrm{dp}) \end{aligned}$	a vector cross product meth Realisation that the vector cross product is required between $\pm A \mathbf{d}_{1}$ and $\pm B \mathbf{d}_{2}$. An attempt to apply the vector cross product formula anything that rounds to 31.82	M1 \underline{L} $\begin{aligned} & \text { dM1 } \\ & \text { (A1 on } \\ & \text { ePEN })\end{aligned}$ A1
(d)	M1	Full method for finding B and for finding the magnitude of $\overrightarrow{A B}$ or the magnitude of $\overrightarrow{B A}$.		
	dM1	pendent on the first method mark being awarded. rites down correct trigonometric equation involving the $\frac{d}{\text { their } A B}=\sin \theta \text { or } \frac{d}{\text { their } A B}=\cos (90-\theta), \text { o.e., wh }$ d $\theta=$ "their θ " or stated as θ	hortest distance, d. ere "their $A B$ " is a value.	
	A1	anything that rounds to 7.46		

Question Number	Scheme	Marks
5. (a)	Note: You can mark parts (a) and (b) together.	
	$x=4 t+3, \quad y=4 t+8+\frac{5}{2 t}$	
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=4, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=4-\frac{5}{2} t^{-2} \quad$ Both $\frac{\mathrm{d} x}{\mathrm{~d} t}=4$ or $\frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{1}{4}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=4-\frac{5}{2} t^{-2}$	B1
	So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4-\frac{5}{2} t^{-2}}{4}\left\{=1-\frac{5}{8} t^{-2}=1-\frac{5}{8 t^{2}}\right\}$ Candidate's $\frac{\mathrm{d} y}{\mathrm{~d} t}$ divided by a candidate's $\frac{\mathrm{d} x}{\mathrm{~d} t}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { o.e. } \end{array}$
		A1
		[3]
	Way 2: Cartesian Method	
	$\frac{\mathrm{d} y}{}=1-\frac{10}{\mathrm{~d} y}=1-\frac{10}{(x-3)^{2}} \text {, simplified or un-simplifed. }$	B1
	$\mathrm{d} x \quad(x-3)^{2}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \lambda \pm \frac{\mu}{(x-3)^{2}}, \quad \lambda \neq 0, \mu \neq 0$	M1
	$\{$ When $t=2, x=11\} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{27}{32} \ldots$	A1
		[3]
	Way 3: Cartesian Method	
		B1
	$\left\{=\frac{x^{2}-6 x-1}{(x-3)^{2}}\right\}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{f}^{\prime}(x)(x-3)-1 \mathrm{f}(x)}{(x-3)^{2}}$ where $\mathrm{f}(x)=$ their " $x^{2}+a x+b$ ", $\mathrm{g}(x)=x-3$	M1
	$\{$ When $t=2, x=11\} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{27}{32} \ldots$	A1
		[3]
(b)	$\left\{t=\frac{x-3}{4} \Rightarrow\right\} y=4\left(\frac{x-3}{4}\right)+8+\frac{5}{2\left(\frac{x-3}{4}\right)} \quad \begin{array}{r}\text { Eliminates } t \text { to achieve } \\ \text { an equation in only } x \text { and } y\end{array}$	M1
	$y=x-3+8+\frac{10}{x-3}$	
	$\begin{aligned} & y=\frac{(x-3)(x-3)+8(x-3)+10}{x-3} \text { or } y(x-3)=(x-3)(x-3)+8(x-3)+10 \\ & \text { or } y=\frac{(x+5)(x-3)+10}{x-3} \text { or } y=\frac{(x+5)(x-3)}{x-3}+\frac{10}{x-3} \end{aligned}$ See notes	dM1
	$\Rightarrow y=\frac{x^{2}+2 x-5}{x-3},\{a=2 \text { and } b=-5\} \quad y=\frac{x^{2}+2 x-5}{x-3} \quad \text { or } a=2 \text { and } b=-5$	$\begin{array}{\|l} \text { A1 } \\ \text { cso } \end{array}$
		[3] 6

Question Number	Scheme	Marks
5. (b)	Alternative Method 1 of Equating Coefficients $\begin{aligned} & y=\frac{x^{2}+a x+b}{x-3} \Rightarrow y(x-3)=x^{2}+a x+b \\ & y(x-3)=(4 t+3)^{2}+2(4 t+3)-5=16 t^{2}+32 t+10 \\ & x^{2}+a x+b=(4 t+3)^{2}+a(4 t+3)+b \end{aligned}$	
	$(4 t+3)^{2}+a(4 t+3)+b=16 t^{2}+32 t+10 \quad \begin{array}{r}\text { Correct method of obtaining an } \\ \text { equation in only } t, a \text { and } b\end{array}$	M1
	$t: \quad 24+4 a=32 \quad \Rightarrow a=2$ constant: $9+3 a+b=10 \quad \Rightarrow b=-5$ Equates their coefficients in t and finds both $a=\ldots$ and $b=$.. $a=2$ and $b=-5$	dM1
		[3]
5. (b)	Alternative Method 2 of Equating Coefficients	
	$\left\{t=\frac{x-3}{4} \Rightarrow\right\} y=4\left(\frac{x-3}{4}\right)+8+\frac{5}{2\left(\frac{x-3}{4}\right)} \quad \begin{array}{r} \text { Eliminates } t \text { to achieve } \\ \text { an equation in only } x \text { and } y \end{array}$	M1
	$\begin{aligned} & y=x-3+8+\frac{10}{x-3} \Rightarrow y=x+5+\frac{10}{(x-3)} \\ & \underline{\underline{y(x-3)}}=(x+5)(x-3)+10 \Rightarrow x^{2}+a x+b=(x+5)(x-3)+10 \end{aligned}$	dM1
	$\Rightarrow y=\frac{x^{2}+2 x-5}{x-3} \quad \begin{aligned} & \text { or equating coefficients to } \\ & \text { give } a=2 \text { and } b=-5 \end{aligned} \quad y=\frac{x^{2}+2 x-5}{x-3} \quad \text { or } a=2 \text { and } b=-5$	A1 cso [3]

\begin{tabular}{|c|c|c|}
\hline \& \multicolumn{2}{|r|}{Question 5 Notes} \\
\hline \multirow[t]{3}{*}{5. (a)} \& \begin{tabular}{l}
B1 \\
Note \\
Note
\end{tabular} \& \begin{tabular}{l}
\(\frac{\mathrm{d} x}{\mathrm{~d} t}=4\) and \(\frac{\mathrm{d} y}{\mathrm{~d} t}=4-\frac{5}{2} t^{-2} \quad\) or \(\quad \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{8 t^{2}-5}{2 t^{2}} \quad\) or \(\frac{\mathrm{d} y}{\mathrm{~d} t}=4-5(2 t)^{-2}(2)\), etc. \(\frac{\mathrm{d} y}{\mathrm{~d} t}\) can be simplified or un-simplified. \\
You can imply the B1 mark by later working.
\end{tabular} \\
\hline \& M1
Note \& Candidate's \(\frac{\mathrm{d} y}{\mathrm{~d} t}\) divided by a candidate's \(\frac{\mathrm{d} x}{\mathrm{~d} t}\) or \(\frac{\mathrm{d} y}{\mathrm{~d} t}\) multiplied by a candidate's \(\frac{\mathrm{d} t}{\mathrm{~d} x}\) M1 can be also be obtained by substituting \(t=2\) into both their \(\frac{\mathrm{d} y}{\mathrm{~d} t}\) and their \(\frac{\mathrm{d} x}{\mathrm{~d} t}\) and then dividing their values the correct way round. \\
\hline \& A1 \& \[
\frac{27}{32} \text { or } 0.84375 \text { cao }
\] \\
\hline \multirow[t]{5}{*}{(b)} \& M1 \& Eliminates \(t\) to achieve an equation in only \(x\) and \(y\). \\
\hline \& dM1

Note \& | dependent on the first method mark being awarded. |
| :--- |
| Either: (ignoring sign slips or constant slips, noting that k can be 1) |
| - Combining all three parts of their $\underline{x-3}+\overline{\overline{8}}+\left(\frac{10}{x-3}\right)$ to form a single fraction with a common denominator of $\pm k(x-3)$. Accept three separate fractions with the same denominator. |
| - Combining both parts of their $\underline{x+5}+\left(\frac{10}{x-3}\right),\left(\right.$ where $\underline{x+5}$ is their $\left.4\left(\frac{x-3}{4}\right)+8\right)$, to form a single fraction with a common denominator of $\pm k(x-3)$. Accept two separate fractions with the same denominator. |
| - Multiplies both sides of their $y=\underline{x-3}+\overline{\overline{8}}+\left(\frac{10}{x-3}\right)$ or their $y=\underline{x+5}+\left(\frac{10}{x-3}\right)$ by $\pm k(x-3)$. Note that all terms in their equation must be multiplied by $\pm k(x-3)$. Condone "invisible" brackets for dM1. |

\hline \& A1 \& Correct algebra with no incorrect working leading to $y=\frac{x^{2}+2 x-5}{x-3}$ or $a=2$ and $b=-5$

\hline \& Note \& | Some examples for the award of dM1 in (b): |
| :--- |
| dM0 for $y=x-3+8+\frac{10}{x-3} \rightarrow y=\frac{(x-3)(x-3)+8+10}{x-3}$. Should be $\ldots+8(x-3)+\ldots$ dM0 for $y=x-3+\frac{10}{x-3} \rightarrow y=\frac{(x-3)(x-3)+10}{x-3}$. The " 8 " part has been omitted. dM0 for $y=x+5+\frac{10}{x-3} \rightarrow y=\frac{x(x-3)+5+10}{x-3}$. Should be $\ldots+5(x-3)+\ldots$ dM0 for $y=x+5+\frac{10}{x-3} \rightarrow y(x-3)=x(x-3)+5(x-3)+10(x-3)$. Should be just 10 . |

\hline \& Note \& $y=x+5+\frac{10}{x-3} \rightarrow y=\frac{x^{2}+2 x-5}{x-3}$ with no intermediate working is dM1A1.

\hline
\end{tabular}

Question Number	Scheme	Marks
6. (a)	$A=\int_{0}^{3} \sqrt{(3-x)(x+1)} \mathrm{d} x, x=1+2 \sin \theta$	
	$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \cos \theta$ $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \cos \theta \text { or } 2 \cos \theta \text { used correctly }$ in their working. Can be implied.	B1
	$\left\{\int \sqrt{(3-x)(x+1)} \mathrm{d} x\right.$ or $\left.\int \sqrt{\left(3+2 x-x^{2}\right)} \mathrm{d} x\right\}$	
	$=\int \sqrt{(3-(1+2 \sin \theta))((1+2 \sin \theta)+1)} 2 \cos \theta\{\mathrm{~d} \theta\} \quad \begin{gathered}\text { Substitutes for both } x \text { and } \mathrm{d} x \\ \text { where } \mathrm{d} x \neq \lambda \mathrm{d} \theta \text {. Ignore } \mathrm{d} \theta\end{gathered}$	M1
	$\begin{aligned} & =\int \sqrt{(2-2 \sin \theta)(2+2 \sin \theta)} 2 \cos \theta\{\mathrm{~d} \theta\} \\ & =\int \sqrt{\left(4-4 \sin ^{2} \theta\right)} 2 \cos \theta\{\mathrm{~d} \theta\} \end{aligned}$	
	$=\int \sqrt{\left(4-4\left(1-\cos ^{2} \theta\right)\right.} 2 \cos \theta\{\mathrm{~d} \theta\}$ or $\int \sqrt{4 \cos ^{2} \theta} 2 \cos \theta\{\mathrm{~d} \theta\} \quad$ Applies $\cos ^{2} \theta=1-\sin ^{2} \theta$	M1
	$=4 \int \cos ^{2} \theta \mathrm{~d} \theta, \quad\{k=4\}$ $4 \int \cos ^{2} \theta \mathrm{~d} \theta \text { or } \int 4 \cos ^{2} \theta \mathrm{~d} \theta$ Note: $\mathrm{d} \theta$ is required here	A1
	$0=1+2 \sin \theta$ or $-1=2 \sin \theta$ or $\sin \theta=-\frac{1}{2} \Rightarrow \theta=-\frac{\pi}{6}$ and $3=1+2 \sin \theta$ or $2=2 \sin \theta$ or $\sin \theta=1 \Rightarrow \theta=\frac{\pi}{2}$	B1
		[5]
(b)	$\left\{k \int \cos ^{2} \theta\{\mathrm{~d} \theta\}\right\}=\{k\} \int\left(\frac{1+\cos 2 \theta}{2}\right)\{\mathrm{d} \theta\} \quad \begin{array}{r}\text { Applies } \cos 2 \theta=2 \cos ^{2} \theta-1 \\ \text { to their integral }\end{array}$	M1
	$\begin{array}{rr} =\{k\}\left(\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right) \quad \text { Integrates to give } \pm \alpha \theta \pm \beta \sin 2 \theta, \alpha \neq 0, \beta \neq 0 \\ \text { or } k(\pm \alpha \theta \pm \beta \sin 2 \theta) \end{array}$	M1 (A1 on ePEN)
	$\begin{aligned} & \left\{\operatorname{So} 4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{~d} \theta=[2 \theta+\sin 2 \theta]_{-\frac{\pi}{6}}^{\frac{\pi}{2}}\right\} \\ & =\left(2\left(\frac{\pi}{2}\right)+\sin \left(\frac{2 \pi}{2}\right)\right)-\left(2\left(-\frac{\pi}{6}\right)+\sin \left(-\frac{2 \pi}{6}\right)\right) \end{aligned}$	
	$\left\{(\pi)-\left(-\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right)\right\}=\frac{4 \pi}{3}+\frac{\sqrt{3}}{2} \begin{aligned} & \frac{4 \pi}{3}+\frac{\sqrt{3}}{2} \text { or } \\ & \frac{1}{6}(8 \pi+3 \sqrt{3}) \end{aligned}$	A1 cao cso
		[3] 8

\begin{tabular}{|c|c|c|}
\hline \& \multicolumn{2}{|r|}{Question 6 Notes} \\
\hline \multirow[t]{4}{*}{6. (a)} \& \begin{tabular}{l}
B1 \\
Note \\
M1 \\
Note \\
Note \\
Note
\end{tabular} \& \begin{tabular}{l}
\(\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \cos \theta\). Also allow \(\mathrm{d} x=2 \cos \theta \mathrm{~d} \theta\). This mark can be implied by later working. \\
You can give B 1 for \(2 \cos \theta\) used correctly in their working. \\
Substitutes \(x=1+2 \sin \theta\) and their \(\mathrm{d} x\left(\right.\) from their rearranged \(\left.\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)\) into \(\sqrt{(3-x)(x+1)} \mathrm{d} x\). \\
Condone bracketing errors here. \\
\(\mathrm{d} x \neq \lambda \mathrm{d} \theta\). For example \(\mathrm{d} x \neq \mathrm{d} \theta\). \\
Condone substituting \(\mathrm{d} x=\cos \theta\) for the \(1^{\text {st }} \mathrm{M} 1\) after a correct \(\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \cos \theta\) or \(\mathrm{d} x=2 \cos \theta \mathrm{~d} \theta\)
\end{tabular} \\
\hline \& M1 \& \begin{tabular}{l}
Applies either \\
- \(1-\sin ^{2} \theta=\cos ^{2} \theta\) \\
- \(\lambda-\lambda \sin ^{2} \theta\) or \(\lambda\left(1-\sin ^{2} \theta\right)=\lambda \cos ^{2} \theta\) \\
- \(4-4 \sin ^{2} \theta=4+2 \cos 2 \theta-2=2+2 \cos 2 \theta=4 \cos ^{2} \theta\) \\
to their expression where \(\lambda\) is a numerical value.
\end{tabular} \\
\hline \& \begin{tabular}{l}
A1 \\
Note \\
Note \\
Note
\end{tabular} \& \begin{tabular}{l}
Correctly proves that \(\int \sqrt{(3-x)(x+1)} \mathrm{d} x\) is equal to \(4 \int \cos ^{2} \theta \mathrm{~d} \theta\) or \(\int 4 \cos ^{2} \theta \mathrm{~d} \theta\) \\
All three previous marks must have been awarded before A1 can be awarded. \\
Their final answer must include \(\mathrm{d} \theta\). \\
You can ignore limits for the final A1 mark.
\end{tabular} \\
\hline \& B1

Note

Note \& | Evidence of a correct equation in $\sin \theta$ or $\sin ^{-1} \theta$ for both x-values leading to both θ values. Eg: |
| :--- |
| - $0=1+2 \sin \theta$ or $-1=2 \sin \theta$ or $\sin \theta=-\frac{1}{2}$ which then leads to $\theta=-\frac{\pi}{6}$, and |
| - $3=1+2 \sin \theta$ or $2=2 \sin \theta$ or $\sin \theta=1$ which then leads to $\theta=\frac{\pi}{2}$ |
| Allow B1 for $x=1+2 \sin \left(-\frac{\pi}{6}\right)=0$ and $x=1+2 \sin \left(\frac{\pi}{2}\right)=3$ |
| Allow B1 for $\sin \theta=\left(\frac{x-1}{2}\right)$ or $\theta=\sin ^{-1}\left(\frac{x-1}{2}\right)$ followed by $x=0, \theta=-\frac{\pi}{6} ; x=3, \theta=\frac{\pi}{2}$ |

\hline \multirow[t]{5}{*}{(b)} \& NOTE \& Part (b) appears as M1A1A1 on ePEN, but is now marked as M1M1A1.

\hline \& M1 \& | Writes down a correct equation involving $\cos 2 \theta$ and $\cos ^{2} \theta$ |
| :--- |
| Eg: $\cos 2 \theta=2 \cos ^{2} \theta-1$ or $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$ or $\lambda \cos ^{2} \theta=\lambda\left(\frac{1+\cos 2 \theta}{2}\right)$ |
| and applies it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral. |

\hline \& M1 \& Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2 \theta$ or $k(\pm \alpha \theta \pm \beta \sin 2 \theta), \alpha \neq 0, \beta \neq 0$ (can be simplified or un-simplified).

\hline \& A1 \& A correct solution in part (b) leading to a "two term" exact answer. Eg: $\frac{4 \pi}{3}+\frac{\sqrt{3}}{2}$ or $\frac{8 \pi}{6}+\frac{\sqrt{3}}{2}$ or $\frac{1}{6}(8 \pi+3 \sqrt{3})$

\hline \& | Note |
| :--- |
| Note |
| Note | \& | $5.054815 \ldots$ from no working is M0M0A0. |
| :--- |
| Candidates can work in terms of k (note that k is not given in (a)) for the M1M1 marks in part (b). If they incorrectly obtain $4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{~d} \theta$ in part (a) (or guess $k=4$) then the final A 1 is available for a correct solution in part (b) only. |

\hline
\end{tabular}

Question Number	Scheme	Marks
7. (a)	$\frac{2}{P(P-2)}=\frac{A}{P}+\frac{B}{(P-2)}$	
	$2 \equiv A(P-2)+B P$	M1
	$A=-1, B=1$	A1
	giving $\frac{1}{(P-2)}-\frac{1}{P} \quad$ See notes. cao, aef	A1
(b)	$\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{2} P(P-2) \cos 2 t$	[3]
	$\int \frac{2}{P(P-2)} \mathrm{d} P=\int \cos 2 t \mathrm{~d} t \quad$ can be implied by later working	B1 oe
	$\begin{array}{r} \pm \lambda \ln (P-2) \pm \mu \ln P, \\ \lambda \neq 0, \mu \neq 0 \end{array}$	M1
	$\ln (P-2)-\ln P=\frac{1}{2} \sin 2 t$	A1
	$\{t=0, P=3 \Rightarrow\} \ln 1-\ln 3=0+c \quad\left\{\Rightarrow c=-\ln 3\right.$ or $\left.\ln \left(\frac{1}{3}\right)\right\} \quad$ See notes	M1
	$\begin{aligned} & \ln (P-2)-\ln P=\frac{1}{2} \sin 2 t-\ln 3 \\ & \ln \left(\frac{3(P-2)}{P}\right)=\frac{1}{2} \sin 2 t \end{aligned}$	
	Starting from an equation of the form $\pm \lambda \ln (P-\beta) \pm \mu \ln P= \pm K \sin \delta t+c$, $\frac{3(P-2)}{P}=\mathrm{e}^{\frac{1}{\sin 2 t} 2 t}$ $\lambda, \mu, \beta, K, \delta \neq 0$, applies a fully correct method to eliminate their logarithms. Must have a constant of integration that need not be evaluated (see note)	M1
	$\left.\begin{array}{cc}3(P-2)=P \mathrm{e}^{\frac{1}{2} \sin 2 t} \Rightarrow 3 P-6=P P^{\frac{1}{\mathrm{e}^{\frac{1}{\sin 2 t}}}} & \begin{array}{r}\text { A complete method of rearranging to } \\ \text { make } P \text { the subject. }\end{array} \\ \text { gives } 3 P-P \mathrm{e}^{\frac{1}{\sin 2 t}}=6 \Rightarrow P\left(3-\mathrm{e}^{\frac{1}{2} \sin 2 t}\right.\end{array}\right)=6 \quad$Must have a constant of integration that need not be evaluated (see note)	dM1
		A 1 * cso
		[7]]
(c)	\{population $=4000 \Rightarrow\} P=4 \quad$ States $P=4$ or applies $P=4$	M1
	$\frac{1}{2} \sin 2 t=\ln \left(\frac{3(4-2)}{4}\right)\left\{=\ln \left(\frac{3}{2}\right)\right\} \quad \begin{array}{r} \text { Obtains } \pm \lambda \sin 2 t=\ln k \text { or } \pm \lambda \sin t=\ln k \\ \lambda \neq 0, k>0 \text { where } \lambda \text { and } k \text { are numerical } \\ \end{array}$	M1
	$t=0.4728700467 . . \quad$ anything that rounds to 0.473	A1
		[3]

Question Number	Scheme			Marks
7. (b)	Method 2 for Q7(b)			
	$\ln (P-2)-\ln P=\frac{1}{2} \sin 2 t(+c)$		As before for...	B1M1A1
	$\ln \left(\frac{(P-2)}{P}\right)=\frac{1}{2} \sin 2 t+c$			
	Starting from an equation of the form $\pm \lambda \ln (P-\beta) \pm \mu \ln P= \pm K \sin \delta t+c$, $\frac{(P-2)}{P}=\mathrm{e}^{\frac{1}{\sin 2 t+c}} \text { or } \frac{(P-2)}{P}=A \mathrm{e}^{\frac{1}{\sin 2 t}}$ $\lambda, \mu, \beta, K, \delta \neq 0$, applies a fully correct method to eliminate their logarithms. Must have a constant of integration that need not be evaluated (see note)			$3^{\text {rd }}$ M1
	$\Rightarrow P\left(1-A \mathrm{e}^{\frac{1}{2} \sin 2 t}\right)=2 \Rightarrow P=\frac{2}{\left(1-A \mathrm{e}^{\frac{1}{2} \sin 2 t}\right)}$		A complete method of rearranging to make P the subject. Condone sign slips or constant errors. Must have a constant of integration that need not be evaluated (see note)	$4^{\text {th }}$ dM1
	$\{t=0, P=3 \Rightarrow\} \quad 3=\frac{2}{\left(1-A \mathrm{e}^{\frac{1}{2 \sin 2(0)}}\right)}$		See notes (Allocate this mark as the $2^{\text {nd }}$ M1 mark on ePEN).	$2^{\text {nd }}$ M1
	$\left\{\Rightarrow 3=\frac{2}{(1-A)} \Rightarrow A=\frac{1}{3}\right\}$			
	$\Rightarrow P=\frac{2}{\left(1-\frac{1}{3} \mathrm{e}^{\frac{1}{\sin 2 t}}\right)} \Rightarrow P=\frac{6}{\left(3-\mathrm{e}^{\frac{1}{2} \sin 2 t}\right)} *$		Correct proof.	A1 * cso
	Question 7 Notes			
7. (a)	$\begin{gathered} \text { M1 } \\ \text { Note } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	Forming a correct identity. For example, $2 \equiv A(P-2)+B P$ from $\frac{2}{P(P-2)}=\frac{A}{P}+$ A and B are not referred to in question. Either one of $A=-1$ or $B=1$. $\frac{1}{(P-2)}-\frac{1}{P}$ or any equivalent form. This answer cannot be recovered from part (b).		$\frac{B}{(P-2)}$
	Note	M1A1A1 can also be given for a candidate who finds both $A=-1$ and $B=1$ and $\frac{A}{P}+\frac{B}{(P-2)}$ is seen in their working. Candidates can use 'cover-up' rule to write down $\frac{1}{(P-2)}-\frac{1}{P}$, so as to gain all three marks. Equating coefficients from $2 \equiv A(P-2)+B P$ gives $A+B=2,-2 A=2 \Rightarrow A=-1, B=1$		

7. (b)	B1 Note	Separates variables as shown on the Mark Scheme. $\mathrm{d} P$ and $\mathrm{d} t$ should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs. Eg: $\int \frac{2}{P^{2}-2 P} \mathrm{~d} P=\int \cos 2 t \mathrm{~d} t$ or $\int \frac{1}{P(P-2)} \mathrm{d} P=\frac{1}{2} \int \cos 2 t \mathrm{~d} t$ o.e. are also fine for B1.
	$\begin{gathered} \mathbf{1}^{\mathrm{st}} \mathbf{~ M 1} \\ \text { Note } \end{gathered}$	$\pm \lambda \ln (P-2) \pm \mu \ln P, \lambda \neq 0, \mu \neq 0$. Also allow $\pm \lambda \ln (M(P-2)) \pm \mu \ln N P ; M, N$ can be 1 . Condone $2 \ln (P-2)+2 \ln P$ or $2 \ln \left(P(P-2)\right.$) or $2 \ln \left(P^{2}-2 P\right)$ or $\ln \left(P^{2}-2 P\right)$
	$1{ }^{\text {st }}$ A1 $2^{\text {nd }} \mathrm{M} 1$	Correct result of $\ln (P-2)-\ln P=\frac{1}{2} \sin 2 t$ or $2 \ln (P-2)-2 \ln P=\sin 2 t$ o.e. with or without $+c$ Some evidence of using both $t=0$ and $P=3$ in an integrated equation containing a constant of integration. Eg: c or A, etc.
	$3^{\text {ra }}$ M1 $\mathbf{4}^{\text {th }} \mathrm{M} 1$ Note	Starting from an equation of the form $\pm \lambda \ln (P-\beta) \pm \mu \ln P= \pm K \sin \delta t+c, \lambda, \mu, \beta, K, \delta \neq 0$, applies a fully correct method to eliminate their logarithms. dependent on the third method mark being awarded. A complete method of rearranging to make P the subject. Condone sign slips or constant errors. For the $3^{\text {rd }} \mathrm{M} 1$ and $4^{\text {th }}$ M1 marks, a candidate needs to have included a constant of integration, in their working. eg. $c, A, \ln A$ or an evaluated constant of integration.
	$\mathbf{2}^{\text {nd }} \mathrm{A} 1$	Correct proof of $P=\frac{6}{\left(3-\mathrm{e}^{\frac{1}{2} \sin 2 t}\right)}$. Note: This answer is given in the question.
	Note Note	$\ln \left(\frac{(P-2)}{P}\right)=\frac{1}{2} \sin 2 t+c$ followed by $\frac{(P-2)}{P}=\mathrm{e}^{\frac{1}{2} \sin 2 t}+\mathrm{e}^{c}$ is $3^{\text {rd }} \mathrm{M} 0,4^{\text {th }} \mathrm{M} 0,2^{\text {nd }} \mathrm{A} 0$. $\ln \left(\frac{(P-2)}{P}\right)=\frac{1}{2} \sin 2 t+c \rightarrow \frac{(P-2)}{P}=\mathrm{e}^{\frac{1}{2} \sin 2 t+c} \rightarrow \frac{(P-2)}{P}=\mathrm{e}^{\frac{1}{2} \sin 2 t}+\mathrm{e}^{c}$ is final M1M0A0
	$4^{\text {th }}$ M1 for making P the subject Note there are three type of manipulations here which are considered acceptable for making P the subject. (1) M1 for $\begin{aligned} & \frac{3(P-2)}{P}=\mathrm{e}^{\frac{1}{\mathrm{~s} \sin 2 t}} \Rightarrow 3(P-2)=P \mathrm{e}^{\frac{1}{2} \sin 2 t} \Rightarrow 3 P-6=P \mathrm{e}^{\frac{1}{2} \sin 2 t} \Rightarrow P\left(3-\mathrm{e}^{\frac{1}{2} \sin 2 t}\right)=6 \\ & \Rightarrow P=\frac{6}{\left(3-\mathrm{e}^{\frac{1}{\sin 2 t}}\right)} \end{aligned}$ (2) M1 for $\frac{3(P-2)}{P}=\mathrm{e}^{\frac{1}{2} \sin 2 t} \Rightarrow 3-\frac{6}{P}=\mathrm{e}^{\frac{1}{\sin 2 t}} \Rightarrow 3-\mathrm{e}^{\frac{1}{2} \sin 2 t}=\frac{6}{P} \Rightarrow \Rightarrow P=\frac{6}{\left(3-\mathrm{e}^{\frac{1}{2} \sin 2 t}\right)}$ (3) M1 for $\begin{aligned} & \left\{\ln (P-2)+\ln P=\frac{1}{2} \sin 2 t+\ln 3 \Rightarrow\right\} P(P-2)=3 \mathrm{e}^{\frac{1}{2} \sin 2 t} \Rightarrow P^{2}-2 P=3 \mathrm{e}^{\frac{1}{2} \sin 2 t} \\ & \Rightarrow(P-1)^{2}-1=3 \mathrm{e}^{\frac{1}{2} \sin 2 t} \text { leading to } P=. . \end{aligned}$	
(c)	$\begin{array}{r} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	States $P=4$ or applies $P=4$ Obtains $\pm \lambda \sin 2 t=\ln k$ or $\pm \lambda \sin t=\ln k$, where λ and k are numerical values and λ can be 1 anything that rounds to 0.473. (Do not apply isw here)
	Note	Do not apply ignore subsequent working for A1. (Eg: 0.473 followed by 473 years is A0.)
	Note	Use of $P=4000$: Without the mention of $P=4, \frac{1}{2} \sin 2 t=\ln 2.9985$ or $\sin 2 t=2 \ln 2.9985$ or $\sin 2 t=2.1912 \ldots$. will usually imply M0M1A0
	Note	Use of Degrees: $t=$ awrt 27.1 will usually imply M1M1A0

Question Number	Scheme	Marks
8. (a)	$\left\{y=3^{x} \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{~d} x}=3^{x} \ln 3 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=3^{x} \ln 3$ or $\ln 3\left(\mathrm{e}^{x \ln 3}\right)$ or $y \ln 3$	B1
	Either T: $y-9=3^{2} \ln 3(x-2)$ or T: $y=\left(3^{2} \ln 3\right) x+9-18 \ln 3$, where $9=\left(3^{2} \ln 3\right)(2)+c$	M1
	\{Cuts x-axis $\Rightarrow y=0 \Rightarrow$ \}	
	$-9=9 \ln 3(x-2)$ or $0=\left(3^{2} \ln 3\right) x+9-18 \ln 3, \quad$ Sets $y=0$ in their tangent equation	M1
	So, $x=2-\frac{1}{\ln 3}$ $2-\frac{1}{\ln 3}$ or $\frac{2 \ln 3-1}{\ln 3}$ o.e.	A1 cso
		[4]
(b)	$V=\pi \int\left(3^{x}\right)^{2}\{\mathrm{~d} x\} \text { or } \pi \int 3^{2 x}\{\mathrm{~d} x\} \text { or } \pi \int 9^{x}\{\mathrm{~d} x\} \quad V=\pi \int\left(3^{x}\right)^{2} \text { with or without } \mathrm{d} x$	B1 o.e.
	$=\{\pi\}\left(\frac{3^{2 x}}{2 \ln 3}\right) \quad \text { or }=\{\pi\}\left(\frac{9^{x}}{\ln 9}\right) \quad \text { Eg: either } 3^{2 x} \rightarrow \frac{3^{2 x}}{ \pm \alpha(\ln 3)} \text { or } \pm \alpha(\ln 3) 3^{2 x}, ~ o r ~ 9^{x} \rightarrow \frac{9^{x}}{ \pm \alpha(\ln 9)} \text { or } \pm \alpha(\ln 9) 9^{x}, \underline{\underline{\alpha}-}$	M1
	$3^{2 x} \rightarrow \frac{3^{2 x}}{2 \ln 3}$ or $9^{x} \rightarrow \frac{9^{x}}{\ln 9}$ or $\mathrm{e}^{2 x \ln 3} \rightarrow \frac{1}{2 \ln 3}\left(\mathrm{e}^{2 x \ln 3}\right)$	A1 o.e.
	$\left\{V=\pi \int_{0}^{2} 3^{2 x} \mathrm{~d} x=\{\pi\}\left[\frac{3^{2 x}}{2 \ln 3}\right]_{0}^{2}\right\}=\{\pi\}\left(\frac{3^{4}}{2 \ln 3}-\frac{1}{2 \ln 3}\right)\left\{=\frac{40 \pi}{\ln 3}\right\} \quad \begin{array}{r}\text { Dependent on the previous } \\ \text { method mark. Substitutes } \\ x=2 \text { and } x=0 \text { and subtracts } \\ \text { the correct way round. }\end{array}$	dM1
	$V_{\text {cone }}=\frac{1}{3} \pi(9)^{2}\left(\frac{1}{\ln 3}\right)\left\{=\frac{27 \pi}{\ln 3}\right\} \quad V_{\text {cone }}=\frac{1}{3} \pi(9)^{2}(2-$ their $(a))$. See notes.	B1ft
		A1 o.e.
	Eg: $p=13 \pi, q=\ln 3\}$	[6]
		10
(b)	Alternative Method 1: Use of a substitution	
	$V=\pi \int\left(3^{x}\right)^{2}\{\mathrm{~d} x\}$	B1 o.e.
	$\left\{u=3^{x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=3^{x} \ln 3=u \ln 3\right\} V=\{\pi\} \int \frac{u^{2}}{u \ln 3}\{\mathrm{~d} u\}=\{\pi\} \int \frac{u}{\ln 3}\{\mathrm{~d} u\}$	
	$=\{\pi\}\left(u^{2}\right) \quad\left(3^{x}\right)^{2} \rightarrow \frac{u^{2}}{ \pm \alpha(\ln 3)} \text { or } \pm \alpha(\ln 3) u^{2}, \text { where } u=3^{x}$	M1
	$\left(3^{x}\right)^{2} \rightarrow \frac{u^{2}}{2(\ln 3)}, \text { where } u=3^{x}$	A1
	$\left\{V=\pi \int_{0}^{2}\left(3^{x}\right)^{2} \mathrm{~d} x=\{\pi\}\left[\frac{u^{2}}{2 \ln 3}\right]_{1}^{9}\right\}=\{\pi\}\left(\frac{9^{2}}{2 \ln 3}-\frac{1}{2 \ln 3}\right)\left\{=\frac{40 \pi}{\ln 3}\right\} \quad \begin{array}{r}\text { Substitutes limits of } 9 \text { and } \\ \text { and } u \text { (or } 2 \text { and } 0 \text { in } x\end{array}$	dM1
	then apply the main scheme.	

	Question 8 Notes	
8. (a)	B1 M1 Note	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3^{x} \ln 3$ or $\ln 3\left(\mathrm{e}^{x \ln 3}\right)$ or $y \ln 3$. Can be implied by later working. Substitutes either $x=2$ or $y=9$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ which is a function of x or y to find m_{T} and - either applies $y-9=\left(\right.$ their $\left.m_{T}\right)(x-2)$, where m_{T} is a numerical value. - or applies $y=\left(\right.$ their $\left.m_{T}\right) x+$ their c, where m_{T} is a numerical value and c is found by solving $9=\left(\right.$ their $\left.m_{T}\right)(2)+c$ The first M1 mark can be implied from later working.
	M1	Sets $y=0$ in their tangent equation, where m_{T} is a numerical value, (seen or implied) and progresses to $x=$
	A1 Note Note Note Note	An exact value of $2-\frac{1}{\ln 3}$ or $\frac{2 \ln 3-1}{\ln 3}$ or $\frac{\ln 9-1}{\ln 3}$ by a correct solution only. Allow A1 for $2-\frac{\lambda}{\lambda \ln 3}$ or $\frac{\lambda(2 \ln 3-1)}{\lambda \ln 3}$ or $\frac{\lambda(\ln 9-1)}{\lambda \ln 3}$ or $2-\frac{\lambda}{\lambda \ln 3}$, where λ is an integer, and ignore subsequent working. Using a changed gradient (i.e. applying $\frac{-1}{\text { their } \frac{d y}{d x}}$ or $\frac{1}{\text { their } \frac{d y}{d x}}$) is M0 M0 in part (a). Candidates who invent a value for m_{T} (which bears no resemblance to their gradient function) cannot gain the $1^{\text {st }}$ M1 and $2^{\text {nd }}$ M1 mark in part (a). A decimal answer of $1.089760773 \ldots$ (without a correct exact answer) is A0.
8. (b)	B1	A correct expression for the volume with or without $\mathrm{d} x$ Eg: Allow B1 for $\pi \int\left(3^{x}\right)^{2}\{\mathrm{~d} x\}$ or $\pi \int 3^{2 x}\{\mathrm{~d} x\}$ or $\pi \int 9^{x}\{\mathrm{~d} x\}$ or $\pi \int\left(\mathrm{e}^{x \ln 3}\right)^{2}\{\mathrm{~d} x\}$ or $\pi \int\left(\mathrm{e}^{2 x \ln 3}\right)\{\mathrm{d} x\}$ or $\pi \int \mathrm{e}^{x \ln 9}\{\mathrm{~d} x\}$ with or without $\mathrm{d} x$
	M1 Note Note Note	Either $\quad 3^{2 x} \rightarrow \frac{3^{2 x}}{ \pm \alpha(\ln 3)}$ or $\pm \alpha(\ln 3) 3^{2 x} \quad$ or $9^{x} \rightarrow \frac{9^{x}}{ \pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9) 9^{x}$ $\mathrm{e}^{2 x \ln 3} \rightarrow \frac{\mathrm{e}^{2 x \ln 3}}{ \pm \alpha(\ln 3)}$ or $\pm \alpha(\ln 3) \mathrm{e}^{2 x \ln 3}$ or $\mathrm{e}^{x \ln 9} \rightarrow \frac{\mathrm{e}^{x \ln 9}}{ \pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9) \mathrm{e}^{x \ln 9}$, etc where $\alpha \in^{-}$ $3^{2 x} \rightarrow \frac{3^{2 x+1}}{ \pm \alpha(\ln 3)}$ or $9^{x} \rightarrow \frac{9^{x+1}}{ \pm \alpha(\ln 3)}$ are allowed for M1 $3^{2 x} \rightarrow \frac{3^{2 x+1}}{2 x+1}$ or $9^{x} \rightarrow \frac{9^{x+1}}{x+1}$ are both M0 M1 can be given for $9^{2 x} \rightarrow \frac{9^{2 x}}{ \pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9) 9^{2 x}$
	A1	Correct integration of $3^{2 x}$. Eg: $3^{2 x} \rightarrow \frac{3^{2 x}}{2 \ln 3}$ or $\frac{3^{2 x}}{\ln 9}$ or $9^{x} \rightarrow \frac{9^{x}}{\ln 9}$ or $\mathrm{e}^{2 x \ln 3} \rightarrow \frac{1}{2 \ln 3}\left(\mathrm{e}^{2 x \ln 3}\right)$
	dM1 Note	dependent on the previous method mark being awarded. Attempts to apply $x=2$ and $x=0$ to integrated expression and subtracts the correct way round. Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0.

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

